
Sumário

Linguagem de
Programação C#

Avançado

Sumário

Apresentação 	 4

Módulo 1	 6

Conceitos básicos para aplicar a linguagem C# avançada 	 6

Conceitos básicos para aplicar a linguagem C# avançada 	7

Classes	 7

Métodos	 8

Construtores	 13

Elementos estáticos	 14

Parâmetros variáveis	 18

Get e set	 19

Enumerações	 21

Structs e classes	 22

Parâmetros por referência	 24

Parâmetro padrão	 26

Módulo 2	 28

Programação orientada a objeto	 28

Programação orientada a objeto 	 29

Abstração e herança 	 29

Polimorfismo e encapsulamento	 33

Classes abstrata e sealed	 36

Sumário

Módulo 3	 38

Expressões	 38

Expressões 	 39

LAMBDA 	 39

Delegate	 41

LINQ	 43

Extensões	 45

Fechamento 	 47

Referências 	 48

Linguagem de Programação C# Avançado

4

Apresentação

Bem-vindo(a) ao curso Linguagem de Programação C# - Avançado!

O objetivo deste curso é apresentar conceitos avançados sobre a utilização
da linguagem de programação C#. Você verá assuntos relevantes para o seu
aprendizado, como: classes, métodos, programação orientada ao objeto,
construtores, elementos estáticos, parâmetros, atributos e enumerações.

O conteúdo é apresentado a partir de exemplos práticos para cada um dos temas
citados, de modo que fique claro como as ferramentas ensinadas poderão ser
utilizadas na hora da programação.

Antes de iniciar seu aprendizado, assista ao vídeo a seguir para uma introdução
quanto ao que será visto ao longo do seu estudo.

Desejamos a você um bom curso!

Vídeo
Confira o vídeo de apresentação do curso.

https://videos3.fb.org.br/FundacaoBradesco/Externos/DE/EV/Linguagem_Programacao_C/Video_01_Linguagem_de_Programacao_C_Avancado.mp4

Linguagem de Programação C# Avançado

5

Perdeu algum detalhe? Confira o que foi abordado no vídeo.

Olá! Bem-vindo(a) ao curso Linguagem de Programação C# - Avançado!

Aqui você verá os conceitos de temas como enumerações, parâmetros,
classe e métodos. Conceitos fundamentais que o auxiliaram a utilizar a
linguagem C# de modo avançado.

Além desses conceitos iniciais da etapa de linguagem C#, você também
aprenderá alguns pontos interessantes sobre a programação orientada
ao objeto, envolvendo assuntos bem conhecidos da área como herança,
polimorfismo, classe abstrata e abstração.

E ao final, você verá sobre métodos e funções na utilização da linguagem
C#.

Com isso, será possível identificar como cada conteúdo se encaixa e o
levará a descobrir como esses conhecimentos farão diferença na sua
vida profissional e pessoal como programador.

Vamos começar essa jornada?

Módulo 1

Conceitos básicos para
aplicar a linguagem C#

avançada

Linguagem de Programação C# Avançado

7

Conceitos básicos para aplicar a
linguagem C# avançada

Neste módulo, você estudará sobre os conceitos fundamentais para que tenha
capacidade de utilizar a linguagem C# de modo avançado. Tais conceitos são: classes,
métodos, construtores, parâmetros variáveis, enumerações, parâmetros por
referência e parâmetro padrão.

Está pronto? Então vamos lá!

Classes
O primeiro conceito que você verá é a classe, o qual é um bloco de construção
básico na linguagem C#. 	
	
Ao criar uma classe, estabelecemos um “tipo”. A partir dessa etapa, criamos uma
variável.

Para que você veja na prática, utilizamos no código abaixo, o exemplo da criação
de uma classe com nome “Carro” e, posteriormente, um novo objeto “C1” para essa
classe.

01. class Carro
02. {
03.’Atributos’
04.
05.’Algoritmos’
06. }
07.
08. Carro C1 = new Carro();

Linguagem de Programação C# Avançado

8

Acompanhe o passo a passo na sequência, para entender o que foi realizado:

Passo 1

Após criar a classe, inserimos dentro dela seus atributos, ou seja,
de forma mais direta, os dados como: cor, marca, nome, potência
etc. Temos, também, os comportamentos, os quais receberão os
dados e farão as funções desejadas.

Passo 2

A partir do comando new, é elaborado um novo objeto que utilizará
a classe em questão, como modelo para a sua criação, fazendo
uso dos seus atributos que, apesar de serem parte da classe, cada
objeto terá um atributo diferente.

Simples, não é mesmo?

Agora que apresentamos como criar uma classe, vamos conhecer os métodos!

Métodos
Após estudar sobre as classes, vamos agora para o conceito de método. Para que você
entenda melhor as suas características e possíveis aplicações, assista ao vídeo a seguir!

Vídeo
Confira o vídeo sobre o conceito de método.

https://videos3.fb.org.br/FundacaoBradesco/Externos/DE/EV/Linguagem_Programacao_C/Video_02_Linguagem_de_Programacao_C_Avancado.mp4

Linguagem de Programação C# Avançado

9

Perdeu algum detalhe? Confira o que foi abordado no vídeo.

Olá, vamos falar um pouco sobre os métodos?

Até este ponto você conheceu o conceito de classe, o modo como ela é
formulada e compreendeu como ela é usada.

Veremos agora o conceito de métodos e sua aplicação dentro do
contexto da Linguagem de Programação C#.

Os métodos são responsáveis por determinar os comportamentos que
serão realizados na classe. Ao criar métodos que realizarão as atividades
desejadas, utilizamos sempre a primeira letra maiúscula, sendo que as
entradas desse método ficarão entre parênteses.

Observe que criamos um método com o nome “Multiplicar”, o qual
receberá duas variáveis do tipo float com nome “x” e “y”.

Veja que definimos também o tipo da variável que será retornada ao
término da resolução das atividades do método, colocando antes do
nome da classe.

Isto é, a variável retornada será do tipo float.

01. float Multiplicar(float x, float y)
02. {
03.
04. return x*y;
05.
06. }

Linguagem de Programação C# Avançado

10

É importante que você saiba que os métodos não precisam,
obrigatoriamente, fazer o retorno de alguma variável, podendo ser de
um tipo que não faz retorno, ou seja, não necessita enviar nada que
será utilizado em outra função, mas poderá realizar comandos dentro
do seu escopo, como resolução de equações, plotar na tela resultados,
dentre outros.

Nesse caso, em vez de colocar o tipo da variável antes do nome do
método, indicamos o nome “void” (vazio), que é uma característica de
métodos que não fazem retorno de variáveis. Observe no exemplo, o
método com nome “Entrada” não faz retorno.

01. void Entrada()
02. {
03. }

Com o que aprendeu até aqui, que tal agora praticar criando os seus
métodos: com retorno e sem retorno de variáveis?

Com o que você aprendeu até aqui, podemos analisar um exemplo inicial para fixar
melhor o conceito sobre métodos.

Vídeo
Acompanhe o que preparamos, assistindo a mais um
vídeo.

https://videos3.fb.org.br/FundacaoBradesco/Externos/DE/EV/Linguagem_Programacao_C/Video_03_Linguagem_de_Programacao_C-Avancado.mp4

Linguagem de Programação C# Avançado

11

Perdeu algum detalhe? Confira o que foi abordado no vídeo.

Olá, agora que você já conhece o conceito de métodos e como eles
determinam os comportamentos na classe, chegou o momento de
praticar. Acompanhe!

Neste código criamos uma classe com o nome “Aluno”.

Dentro dela, inserimos alguns atributos, como nome, idade e série.

Observe que, antes da determinação do tipo dos atributos, existe a
palavra public, que faz esses atributos se tornarem visíveis para todos.

Class Aluno
{
public string Nome;
public int Idade;
public int Serie;

}

Vamos ver mais um exemplo, neste outro código, observe que dentro do
main é estabelecido um objeto para a classe “Aluno”.

Como explicamos anteriormente, ao criarmos um objeto, ele fará uso dos
atributos da classe, mas cada objeto terá seus atributos independentes.

Note que, estabelecemos o objeto “aluno1”. Em seguida, realizamos a
determinação dos seus atributos e apresentamos cada um deles.

Observe que, como resultado, teremos o nome João, idade 13 e série 6.

Linguagem de Programação C# Avançado

12

static void Main(string[] args)

{
Aluno aluno1 = new Aluno();
aluno1.Nome = “João”;
alunol.Idade = 13;
alunoi.Serie - 6;
Console.WriteLine($”0 aluno {aluno1.Nome} tem {aluno1.
Idade) anos e pertence ao {aluno1.Serie} ano”);

}

Vale destacar que outra forma de montagem do código pode ser feita
com a apresentação do aluno ainda na classe. Veja o código na sequência.

class Aluno
{
public string Nome;
public int Idade;
public int Serie;

1 referência
public string Retorno()
{
return string.Format($”O aluno {Nome} tem {Idade}
anos e pertence ao {Serie} ano”);
}

1 referência
public void RetornoConsole()
{
Console.WriteLine(Retorno());
}

Linguagem de Programação C# Avançado

13

Veja que aqui foi criado um método com nome “Retorno”, o qual retornará
à apresentação do aluno na classe.

Perceba que esse método não necessita ter como entrada os parâmetros
do aluno, pois já tem acesso aos atributos. Observe que o resultado será:
O aluno João tem 13 anos e pertence ao 6º ano.

Criamos, ainda, outro método com nome “RetornoConsole”, que fará a
apresentação na tela.

Já no main, é necessário apenas fazer a chamada do método
“RetornoConsole”.

class Program
{
0 referências
static void Main(string[] args)
{
Aluno aluno1 = new Aluno();
aluno1. Nome = “João”;
aluno1.Idade = 13;
aluno1. Serie = 6;

aluno1. RetornoConsole();

}

Agora é com você, tente recriar os exemplos apresentados aqui e veja os
resultados.

Após assistir aos vídeos, não podemos deixar de inserir um elemento importante
nesse contexto: os construtores, assunto que você conhecerá melhor no
próximo tópico.

Linguagem de Programação C# Avançado

14

Construtores
Quando nos referimos a construtores, analisamos um método que faz um laço
entre classe e objeto. Observe o código abaixo que traz o funcionamento do
construtor.

class Carro
{
public string Nome;
public string Marca;
public double Potencia;
1 referência
public Carro(string nome, string marca, double potencia)
{
Nome = nome;
Marca = marca;
Potencia = potencia;
}
1 referência
public Carro()
{
}
}
0 referências

class Construtor
{

0 referências
static void Main(string[] args)
{
var carro = new Carro();
carro.Nome = “Hilux”;
carro.Marca = “Toyota”;
carro.Potencia = 3.1;
Console.WriteLine($”{ carro.Nome} { carro.Marca} { carro.
Potencia}”);
var carro2 = new Carro(“Celta”,”Chevrolet”,1.0);
Console.WriteLine($”{carro2.Nome} {carro2.Marca} {carro2.
Potencia}”);
}

Linguagem de Programação C# Avançado

15

Fizemos a criação de um objeto por método tradicional, realizando a
determinação dos parâmetros um a um, assim como está no início do
nosso main, mas considerando a criação do construtor “Carro” para
receber os parâmetros. Nesse caso, os atributos do construtor iniciam
com letra minúscula, tornando-o diferente dos atributos já determinados
anteriormente.

Portanto, é possível compreender que o segundo carro é chamado pelo
construtor. Então, temos duas formas de trabalhar, sendo que o construtor
fez exatamente o papel esperado: a ligação entre classe e objeto.

Para dar continuidade aos seus estudos, no próximo tópico, você verá sobre os
elementos estáticos.

Elementos estáticos

Você conhece os elementos estáticos? Sabe como eles funcionam? Acompanhe o
slide na sequência para entender como são aplicados!

O conceito de estático se aplica
tanto aos métodos quanto aos
atributos. Ao analisarmos os
exemplos dos códigos utilizados
até aqui, percebemos a presença
da palavra static, que representa os
elementos estáticos.

#PraCegoVer
Um homem e uma mulher estão em frente a uma
tela de um computador. Ele está à direita com
uma camisa azul apontando para tela e ela está à
esquerda com uma camisa preta digitando, sendo
que ambos estão comentando sobre códigos de
programação.

Linguagem de Programação C# Avançado

16

O fato de termos um método
estático nos faz com que
seja possível obter o acesso
diretamente, sem precisarmos
criar uma nova instância, ou seja,
não será necessária a criação de
uma instância para a chamativa da
classe.

#PraCegoVer
As mãos de um programador, segurando uma
caneta, interagindo com a tela de um notebook que
contém linhas de código de programação.

Verifique no código a seguir que conseguimos chamar a classe “MetodosEstaticos”
no main, para a realização da multiplicação sem a necessidade de termos que criar
um objeto.

Linguagem de Programação C# Avançado

17

Elementos estáticos

class MetodosEstaticos
{
1 referência
public static int somar (int x, int y)
{
return x + y;
}
1 referência
public static int multiplicar (int x, int y)
{
return x * y;
}
0 referências
static void Main(string[] args)
{
var result = MetodosEstaticos.somar (3, 3);
Console.WriteLine(“A soma é igual a: {0}”, result);

Console.WriteLine(MetodosEstaticos.multiplicar(3, 4));
}

Agora, observe no próximo código que, se excluirmos a determinação static do
método multiplicar, será necessária a criação de uma instância. Nesse caso,
devemos criar calc para ter acesso ao método “multiplicar”.

Linguagem de Programação C# Avançado

18

Criando uma instância

class MetodosEstaticos
{
1 referência
public static int somar (int x, int y)
{
return x + y;
}
1 referência
public static int multiplicar (int x, int y)
{
return x * y;
}
0 referências
static void Main(string[] args)
{
var result = MetodosEstaticos.somar (3, 3);
Console.WriteLine(“A soma é igual a: {0}”, result);

MetodosEstaticos cal = new MetodosEstaticos();
Console.WriteLine(MetodosEstaticos.multiplicar(3, 4));
}

O mesmo conceito se aplica aos atributos estáticos, em que, caso seja atribuída a
característica de estático ao atributo, este passará a se referir à classe como um
todo, deixando de ser uma instância específica.

Depois de você entender os conceitos de elementos estáticos, principalmente, em
relação à sua capacidade de dispensar a criação de uma instância para a chamativa
da classe, você estudará no próximo tópico sobre os parâmetros variáveis.

Linguagem de Programação C# Avançado

19

Parâmetros variáveis

No contexto da Linguagem C#, quando estamos elaborando uma linha de código,
existem os parâmetros, isto é, elementos que passam a obter um valor pelos
programadores, os quais podem detalhar os parâmetros separadamente para
cada método diferente, no caso, os argumentos, ou seja, o valor atribuído a um
parâmetro no momento em que se chama o procedimento.

Já os parâmetros variáveis trazem a possibilidade de passarmos quantos
parâmetros desejarmos, e a linguagem agrupará essas variáveis.

Veja no código abaixo que utilizamos a função da linguagem C#, denominada de
params, para estabelecermos a criação desse parâmetro variável. Além disso,
incluímos o foreach com o objetivo de realizar a varredura enquanto houver nomes
disponíveis para expor na tela.

Parâmetros variáveis

public static void Despedida (params string [] alunos)
{
foreach (var aluno in alunos)
{
Console.WriteLine(“Tchau {0}, até a próxima aula”, aluno);
}
}

0 referências
static void Main()
{
Despedida(“Joao”, “Thiago”, “Antonio”);
}

Nesse sentido, enviamos para o método “Despedida” mais de uma variável, sendo
que todas foram agrupadas em “alunos”.

Linguagem de Programação C# Avançado

20

Resultado do algoritmo

O resultado desse algoritmo é mostrado abaixo. Observe que todas as variáveis
criadas no main foram apresentadas na tela.

Tchau Joao, até a próxima aula
Tchau Thiago, até a próxima aula
Tchau Antonio, até a próxima aula

Além dos parâmetros variáveis, ainda temos os tipos get e set, que você estudará na
sequência. Vamos lá!

Get e set
Até esse ponto você aprendeu que a criação de atributos do tipo public faz com que
eles sejam visíveis para todos. O contrário também é válido, ou seja, se criarmos
atributos do tipo private, eles serão visíveis apenas para o método.

	• A vantagem de utilização de
atributos do tipo private é evitar
que sejam modificados. Para
termos acesso a eles, devem ser
criados métodos.

	• Deve ser estabelecido um
atributo para alterar o tipo set,
enquanto o método get nos
ajudará na leitura do valor do
atributo. Assim, cada atribu-
to terá um método get e um
método set.

	
	

#PraCegoVer
Mesa de trabalho com uma tela de notebook
que duas pessoas estão em uma mesa com seus
computadores executando linhas de programação,
um dos usuário está com um notebook e outro está
digitando em um computador de mesa.

Linguagem de Programação C# Avançado

21

No código a seguir, note como o termo é feito para a utilização dos métodos get e
set, conforme você estudou até o momento.

Método get e set

public class Carro
{
private string Marca;
private string Nome;
private double Potencia;

1 referência public Carro(string marca, string nome, double
potencia)
{
Marca - marca;
Nome = nome;
Potencia - potencia;
}
0 referências
public Carro()
{

}
1 referencia
public string GetMarca()
{
return Marca;
}
0 referências
public void SetMarca(string marca)
{
Marca = marca;
}
1 referência
public string GetNome()
{
return Nome;
}

Linguagem de Programação C# Avançado

22

Perceba que foi criada a classe “Carro”, com os atributos do tipo private — que serão
acessados pelos métodos get e set — e, posteriormente, foi criado o construtor. No
código, demonstramos a criação dos métodos get e set para o atributo “Marca”, mas
o procedimento é realizado para os três atributos.

Neste tópico, você estudou sobre um tipo específico de parâmetro variável, o get
e set, cuja função é atribuir a característica “private” a um método específico. Já
a seguir, estudaremos as enumerações, enums, recurso usado para as variáveis
incomuns presentes na linguagem C#.

Enumerações
Em determinados momentos, é necessário realizarmos a representação de alguma
variável que não se encaixa nos tipos comuns, como string ou int. Dessa forma,
criamos os enums. Como a própria abreviação nos revela, serve para indicar
enumerações de atributos. Observe no código!

Enumeração

class Enum
{
2 referências
public enum Genero { Filme, Serie, Documentario};

0 referências
public class Filme
{
public string Nome;
public Genero TipoVideo;
}

0 referências
static void Main()
{
int cod = (int)Genero.Serie;
Console.WriteLine(cod);

}

Linguagem de Programação C# Avançado

23

Note que ele apresenta um exemplo de enumeração realizada para a designação
de um vídeo. É importante observar que, no main, é feita a conversão de string para
int. O valor que retornará para a tela será a posição do tipo “serie”, tendo valor igual
a “1”, uma vez que a enumeração começa a contar de “0”.

Depois de estudar sobre as enumerações, as quais estão relacionadas a variáveis
incomuns, você verá os conceitos de structs e classes.

Structs e classes
Antes de continuarmos nossos estudos, é importante reforçarmos a diferença
entre dois conceitos: struct e classe.

Isso se justifica, porque ambos influenciam na elaboração das linhas de código,
principalmente, quando você, futuro programador, estiver trabalhando com a
criação de estrutura de dados.

Sabendo disso, agora, vamos entender a principal diferença entre struct e classe!

Struct

A atribuição é sempre feita por valor, e não por referência.

Classe

A atribuição é realizada por referência.

No código a seguir, foram criadas uma struct e uma classe com os mesmos
parâmetros, a fim de verificarmos na prática essa diferença. Observe com atenção!

Linguagem de Programação C# Avançado

24

Struct e classe (comparação)

class StructClasse
{
2 referencias
public struct PontoS
{
public int X;
public int Y;
}
2 referências
public class Pontoc
{
public int X;
public int Y;
}
0 referencias
public static void Main()
{
PontoS ponto = new Pontos { X = 5, Y = 3 };
PontoS ponto2 = ponto; // Copiar através do valor;
ponto.X = 3;

Console.WriteLine(“Ponto: {0}”, ponto.x);
Console.WriteLine(“Ponto 2: {0} “, ponto2.x);

Pontoc ponto3 = new Pontoc { x = 6, Y = 9 };
Pontoc ponto4 = ponto3;
ponto3.X = 3;

Console.WriteLine(“Ponto 3 = {0} , Ponto 4 - {1}”, ponto3.x,
ponto4.x);
}

Note que, ao fazer a resolução do algoritmo, no caso da struct, os valores não são
iguais, ou seja, mesmo que tenhamos criado uma cópia do ponto, ao modificar um,
não se observará a mesma modificação no outro. Esse fato, por outro lado, já não
é observado para o caso da utilização da classe.

Linguagem de Programação C# Avançado

25

Até aqui, você conheceu a diferença entre struct e classe na linguagem C#. Conforme
falamos, saber a distinção entre ambos é relevante, uma vez que isso influencia na
criação de linhas de códigos as quais possibilitam a elaboração e o uso de estruturas
de dados mais eficazes e eficientes.

A seguir, você verá sobre a maneira pela qual é possível aplicar a referência dentro
do contexto de parâmetros.

Vamos lá?

Parâmetros por referência
Neste tópico, veremos como utilizar uma referência ou cópia de um valor, o que
dependerá da maneira como você deseja criar a chamada da variável.

Observe o código com atenção.

1 referência
public static void AlterarRef (int numero)
{
numero = numero + 500;
}
1 referência
public static void AlterarOut(int numero)
{
numero = numero + 50;
}

0 referências
public static void Main()
{
int x = 5;
AlterarRef(x);
Console.WriteLine(x);

int y = 8;
AlterarOut(y);
Console.WriteLine(y);

}

Linguagem de Programação C# Avançado

26

Note que os valores que utilizamos ao fazer a chamativa dos métodos faz uma cópia
das variáveis “x” e “y”. Com isso, ela não será alterada. Logo, os valores impressos
na tela serão “5” e “8”, pois não foi transmitida a referência, mas sim, a cópia da
variável.

public static void AlterarRef (ref int numero)
{
numero = numero + 500;
}
1 referência public static void AlterarOut(int numero)
{
numero = 0;
numero = numero + 50;
}
O referências
public static void Main()
{
int x = 5;
AlterarRef(ref x);
Console.WriteLine(x);

int y = 8;
AlterarOut(y);
Console.WriteLine(y);

}

Observe, ainda, que existe a possibilidade de fazermos a passagem das variáveis
como referências. Verifique que a variável “x” está sendo passada como referência,
portanto, os valores que serão impressos na tela ao compilar o algoritmo serão
“505” e “8”.

Assim como temos o parâmetro por referência, também existe o parâmetro padrão,
que você estudará a seguir.

Linguagem de Programação C# Avançado

27

Parâmetro padrão
O parâmetro padrão, como o próprio nome indica, está relacionado ao padrão
que será atribuído para determinada variável, caso nenhum valor seja concedido a
ela. Vamos analisar um exemplo?

Veja o caso a seguir:

01. public static double Multiplica(double x = 3.4 , double y
= 3){
02. return x * y;
03. }

Nesse exemplo, foram inseridos valores padrões para as variáveis “x” e “y”, os quais
são iguais a “3,4” e “3”, respectivamente. Esses valores podem ser modificados em
algum momento, mas, caso não haja alterações durante o decorrer do código, o
valor padrão será mantido.

Atenção
Lembre-se! A utilização desses valores padrões não se aplica para
o uso de “ref” ou “out”.

Parabéns! Você chegou ao final do módulo 1.

Neste módulo, você conheceu os conceitos fundamentais para a aplicação da
linguagem C#, que são relevantes para o seu futuro profissional, como, por
exemplo, na programação orientada a objetos, a qual é muito usada em situações
de desenvolvimentos de softwares personalizados de acordo com as futuras
demandas.

A respeito desses conceitos iniciais, vamos estudar um pouco mais sobre a
programação orientada a objeto? Será o assunto do próximo módulo.

Módulo 2

Programação
orientada a objeto

Linguagem de Programação C# Avançado

29

Programação orientada a objeto

Neste módulo, serão apresentados os conceitos relacionados à linguagem C#
ligados à programação orientada a objetos, a qual é muito importante quando você
estiver atuando como programador, sobretudo, ao criar softwares personalizados.

Partindo disso, você estudará sobre abstração e herança, polimorfismo, e
encapsulamento, classe abstrata e classe sealed.

Vamos começar?!

Abstração e herança
Para iniciar seus estudos sobre abstração e herança, ouça nosso podcast para obter
maiores informações quanto aos conceitos.

Podcast
Confira o podcast sobre abstração e herança.

https://videos3.fb.org.br/FundacaoBradesco/Externos/DE/EV/Linguagem_Programacao_C/C_Avancado_podcast.mp3

Linguagem de Programação C# Avançado

30

Perdeu algum detalhe? Confira o que foi abordado no podcast.

Olá! Tudo bem? Vamos falar um pouco sobre a Abstração e a Herança?
Embora pareçam dois conceitos fáceis de entender, na prática eles
podem exigir certa atenção da nossa parte para não haver confusão.

Por isso, é preciso ter cuidado no momento de aplicar cada um deles na
construção da linguagem de programação.

O conceito de abstração se refere ao processo de abstrair a ideia do
projeto e trazer ela para o código.

Para deixar mais fácil a explicação sobre a abstração, imagine um sistema
de registro de todas as escolas de um determinado estado, onde, desse
sistema, você precisa abstrair as características necessárias de cada
escola e trazer para o código. Como por exemplo: nome, quantidade
de funcionários, verbas enviadas para a escola, entre outros aspectos.

Já a herança é uma característica relacionada com a possibilidade de
fazer a reutilização de códigos, mas atenção, devemos sempre evitar o
autoplágio.

De maneira prática, podemos dizer que a Herança é a possibilidade
de uma classe herdar os atributos de outra, que pode ser chamada de
superclasse.

Aliás, uma característica da linguagem C# é que uma classe só pode ter
herança de outra classe.

Assim fica mais prático de compreender e entender a diferença entre a
Abstração e a Herança, não é mesmo?

Observe no código, o conceito inicial do processo de utilização de herança de
determinada classe.

Linguagem de Programação C# Avançado

31

Herança (parte 1)

public class Professor
{

protected readonly float salariomaximo;
float salarioatual;

1 referência
public Professor(float salarioMaximo)
{
salariomaximo = salarioMaximo;
}

2 referências
protected float Modificarsalario(float Modf)
{
float novoSalario = salarioatual + Modf;

if (novoSalario < 0)
{
salarioatual = 0;
}
else if (novoSalario > salariomaximo)
{
salarioatual = salariomaximo;
}
else
salarioatual = novoSalario;
}
return salarioatual;
}

2 referências
public float AumentaSalario()
{
return Modificarsalario(+500);
}

0 referências
public float DiminuiSalario()
{
return Modificarsalario(-500);
}

Linguagem de Programação C# Avançado

32

Esse projeto consiste em um algoritmo para controle de salário dos professores.
Note que, inicialmente, foi criada a variável “salariomaximo” com característica
“readonly”, ou seja, que não pode ser modificada. Já o “salarioatual” serve para fazer
a atualização do valor do salário do professor.

Observe os pontos principais quanto ao que foi realizado no projeto mencionado.
Vamos conhecê-los!

▼ Ponto 1

Foi realizada a formação de um construtor, que recebe o valor do
salário máximo.

▼ Ponto 2

Criou-se um método responsável por fazer a modificação do
salário.

▼ Ponto 3

Foi acrescentada uma espécie de saturador, em que,
determinando-se um teto máximo e um valor mínimo para o
salário, este não poderá ser negativo, nem ultrapassar o teto
máximo.

Além de tudo isso, foram criados os métodos responsáveis por fazer
o aumento ou a diminuição do salário, intitulados “AumentaSalario” e
“DiminuiSalario”, respectivamente.

Linguagem de Programação C# Avançado

33

Agora, veja mais uma parte do código:

Herança (parte 2)

public class Prof : Professor
{

1 referência
public Prof() : base (1400)
{
0 referências
public static void Main()
{
Console.WriteLine(“Professor 1: “);
Prof profi = new Prof();
Console.WriteLine (prof1. AumentaSalario());
Console.WriteLine(prof1. AumentaSalario());

}

Note que foi criada uma classe “Prof” que herdará os métodos da superclasse
“Professor”. Posteriormente, no main, criamos um objeto para a classe que herdou
os métodos. Em seguida, utilizamos os métodos herdados com o objeto criado.

Na prática, os conceitos de abstração e herança ficam mais fáceis de serem
entendidos, não é mesmo? Assim como a técnica utilizada, que o ajudará muito no
desenvolvimento de seus projetos. Com o objetivo de complementar seus estudos,
no próximo tópico apresentaremos o polimorfismo e o encapsulamento. Confira!

Polimorfismo e encapsulamento

O Polimorfismo e o Encapsulamento almejam tornar o futuro software não só mais
flexível, como também facilita a sua modificação e criação de novas implementações.

Linguagem de Programação C# Avançado

34

Iniciando pelo Polimorfismo, pode-se dizer que ele se subdivide em estático ou
dinâmico. Vamos entender a diferença entre os dois e ainda conhecer a definição
do que é o encapsulamento, muito utilizado também no dia a dia da profissão!

▼ Polimorfismo estático

Observamos dois métodos com o mesmo nome dentro de uma
mesma classe.

▼ Polimorfismo dinâmico

Consiste em sistemas que contêm classes com heranças, fazendo
a instância de objetos a partir da superclasse.

▼ Encapsulamento

Consiste na possibilidade de “esconder” parte do código para evitar
o acesso de outra pessoa que não seja o programador, ficando até
mais fácil realizar modificações no código sem causar problemas.

Temos disponíveis quatro tipos de visibilidade. No caso do public, está
relacionado ao que pode ser visto e acessado por todos. Já internal é
aquilo que pode ser acessado apenas dentro do projeto. O protected está
ligado ao que é passado por herança. Por fim, o private é aquilo que pode
ser visto apenas pela classe.

Para entender o conceito de encapsulamento na prática, observe na parte 1 do
código abaixo, a criação de uma variável do tipo private, a qual será acessada apenas
pela classe responsável. Utilizaremos, também, os métodos get e set estudados
anteriormente, demonstrando uma relação entre os conteúdos.

Linguagem de Programação C# Avançado

35

Encapsulamento (parte 1)

public class Mensagem
{
private String Texto;

1 referência
public void Exibir()
{
Console.WriteLine(this.Texto);
}

0 referências
public String getTexto()
{
return this.Texto;
}
1 referência
public void setTexto(String txt)
{
this. Texto = txt;
}

Na parte 2 do código, note que o acesso aos métodos da classe é realizado a partir de
objetos criados nessa mesma classe.

Encapsulamento (parte 2)

static void Main(string [] args)
{
Mensagem txt1, txt2;

txt1 = new Mensagem();
txt1.setTexto(“CURSO AVANÇADO DE C#”);
txt1. Exibir();

}

Linguagem de Programação C# Avançado

36

Após estudar sobre o Polimorfismo estático e dinâmico, bem como o
Encapsulamento a partir de exemplos, você pode notar o quanto eles facilitam as
possíveis modificações do software que será desenvolvido por você, como também
o tornam mais eficaz no momento do uso.

Todavia, aliados a esses dois conceitos, você verá no próximo tópico sobre as classes
abstrata e sealed.

Classes abstrata e sealed
Conforme você estudou, a classe é um bloco de construção básico na linguagem C#.
Ela pode ser do tipo abstrata somente se houver outra classe que a herde, uma vez
que esse tipo não pode ser instanciado. Entenda melhor com os conceitos abaixo!

	• A classe abstrata deve ser cria-
da caso o programador tenha
a intenção de elaborar outras
classes que herdem os métodos
da primeira.

	• A classe abstrata pode ter todos
os seus métodos abstratos.

#PraCegoVer
Mesa de trabalho com uma tela de notebook que
contém vários códigos de programação rodeada
por vasos de plantas.

No código a seguir, veja na prática a criação de uma classe abstrata com o nome
“Telefone” e a criação, logo na sequência, de uma classe de nome “Xiaomi”, que
herda os métodos da classe “Telefone”. No caso, a configuração override é utilizada
quando desejamos sobrescrever um método.

Linguagem de Programação C# Avançado

37

Classe abstrata

public abstract class Telefone
{
1 referência
public abstract string Tipo();
}

0 referências
public class Xiaomi : Telefone
{
1 referência
public override string Tipo()
{
return “Note 8 Pro”;
}

Já a classe do tipo sealed é utilizada quando desejamos que seja proibido haver
herança. A configuração é realizada conforme o exemplo a seguir, fazendo com que a
classe “Escola” esteja selada.

01. sealed class Escola {
02. }

Parabéns! Você chegou ao final do módulo 2.

Nele, você estudou sobre os conceitos de abstração e herança, polimorfismo,
encapsulamento, classe abstrata e classe sealed.

Agora, para que seus estudos fiquem completos, vamos aprender sobre expressões?

Na programação, elas são muito relevantes, porque auxiliam na construção das
operações, viabilizando a aplicação da Linguagem C#, contribuindo diretamente para
o seu futuro profissional.

Desta forma, acompanhe o último módulo a seguir.

Módulo 3

Expressões

Linguagem de Programação C# Avançado

39

Expressões

Nesse último módulo, você aprenderá um conjunto de expressões essenciais para
a aplicação da linguagem C#. Nesse sentido, vamos conhecer os métodos e funções
dentro do uso dessa linguagem, envolvendo o estudo de LAMBDA, delegates, LINQ
e extensões. Vamos lá!

LAMBDA

Considerando a linguagem LAMBDA, iremos analisar as suas funções principais: a
action e func. Você sabe qual é a diferença entre elas? Observe!

Action

Tipo de função que não tem retorno.

Func

Tipo de função que apresenta retorno.

A seguir, temos um exemplo desses tipos de funções na prática:

Linguagem de Programação C# Avançado

40

Funções

static void Main(string[] args)
{
Action apresentaConsole = () =>
{
Console.WriteLine(“Funções e Métodos “);
};

apresentaConsole();

Func<int> sorteio = () =>
{
Random random = new Random();
return random.Next(1, 101);
};

Console.WriteLine(sorteio());

}

Note que, inicialmente, com a criação de uma action, entre parênteses, ficarão os
parâmetros que são desejados passar para a função. A continuação da action pode
ser compreendida melhor ao analisar as seguintes informações:

Linguagem de Programação C# Avançado

41

Utilizamos o símbolo => para
indicar que, após os parâmetros,
virá o corpo da função. Esse
símbolo é chamado de arrow.

No corpo, como não há retorno,
apresentamos na tela uma frase.
Em seguida, é feita a chamada
dessa função.

#PraCegoVer
Tela aproximada de um computador com parte de
um código de programação desfocado.

Posteriormente, foi criada a função do tipo func para realizar o sorteio de um número.
O retorno dessa função é do tipo int. Na sequência, utilizamos a função random, que
sorteará um número de 1 a 100. Por fim, o número sorteado é apresentado na tela.

Desta forma, você pôde compreender mais sobre a relevância da linguagem
LAMBDA, sobretudo associada aos conceitos de action e func, os quais são essenciais
para operações randômicas nas linhas de código.

Delegate

Agora, falaremos sobre a função delegate. Ela se caracteriza como uma referência
para um ou mais métodos, a qual é utilizada para a comunicação entre objetos de
forma flexível e extensível. Observe o exemplo abaixo onde é criado um delegate
no código.

Linguagem de Programação C# Avançado

42

Delegate

namespace Delegate
{

delegate double BinaryNumericOperation (double ni, double);
O referências
class Program
{

1 referência
class Calculadora
{

0 referências
public static double Max(double X, double Y)
{
if (X > Y)
{
return X;
}
else
{
return Y;
}
}
1 referência
public static double soma(double X, double Y)
{
return X + Y;
}
1 referências
static void Main(string[] args)
{
double a = 10;
double b = 30;

BinaryNumericOperation operacao = Calculadora. soma;
Console.WriteLine(operacao(a,b));
}
}

Linguagem de Programação C# Avançado

43

Nesse exemplo, é possível verificar que, dentro do “namespace” e antes da classe,
foi criado o delegate como uma operação numérica binária. Isto é, será referência
para uma operação que receberá dois números do tipo double (n1, n2).

Depois disso, dentro do main do programa, declara-se um objeto que receberá
a classe calculadora com o método de soma, sendo possível fazer a chamada
apenas com o “op” enviando as variáveis desejadas para a realização da operação.
Lembramos de que é importante fazer o teste realizando o exemplo e as modificações
para verificar o funcionamento.

Como pode ver, a função delegates auxilia na interpretação do código criado, uma
vez que o torna menos confuso, facilitando, assim, a sua leitura.

LINQ

Por f﻿im, você estudará sobre a última função, o Language Integrated Query (LINQ).
Ele pode ser traduzido como uma consulta integrada à linguagem, diz respeito a
tecnologias baseadas na integração de funcionalidade, consultando diretamente a
linguagem C#.

No LINQ, as operações são chamadas diretamente a partir das coleções.
Em caso de consulta ao banco de dados, o compilador irá nos auxiliar a
escrever corretamente o que precisarmos.

Assista ao vídeo, que traz um exemplo de LINQ de forma bem detalhada e explicativa,
a fim de não restarem dúvidas!

Vídeo
Confira o vídeo sobre um exemplo de LINQ de forma bem
detalhada.

https://videos3.fb.org.br/FundacaoBradesco/Externos/DE/EV/Linguagem_Programacao_C/Video_04_Linguagem_de_Programacao_C_Avancado.mp4

Linguagem de Programação C# Avançado

44

Perdeu algum detalhe? Confira o que foi abordado no vídeo.

Olá!

Para criar a função LINQ (do inglês Language Integrated Query) primeiramente
você deve criar uma fonte com os dados.

Observe que o LINQ é inserido no código utilizando o using logo no início
do algoritmo. O código é utilizado para encontrar os números pares da
fonte em que foi criada, fornecendo parâmetros.

Nesse caso, é criada a fonte “números” com alguns algarismos numéricos.

using System;
using System.Linq;

namespace Ling
{

0 referências
class Program
{
0 referências
static void Main(String[] args) {
int[] numeros = new int[] { 4, 5, 7, 8 };

var operacao = numeros. Where(x => x % 2 == 0);

foreach (int x in operacao)
{
Console.WriteLine(x);
}
}
}
}

Depois disso, é realizada uma operação para buscar os números que,
divididos por dois, tenham resto igual à zero. Em outras palavras,
procuramos os números que sejam divisíveis por dois, os quais são
armazenados na variável “x”. Em seguida, utilizamos o foreach para que
cada valor de “x” seja plotado na tela.

Agora é com você! Pratique estes exemplos e confirme se o resultado
que surgirá na tela são os números 4 e 8

Linguagem de Programação C# Avançado

45

Agora que você conheceu sobre o Language Integrated Query (LINQ), podemos seguir
em frente. Na sequência, focaremos nas extensões e em sua funcionalidade.

Extensões
O objetivo das extensões é adicionar possibilidades a métodos que já existiam, ou
seja, criarmos uma forma a partir daquela já existente. Para que você compreenda
melhor o tema, analise o exemplo apresentado no código a seguir.

Extensão

namespace Extensao
{

O referências
public static class calculadoraExtensao
{
2 referências
public static double Soma (this double ni, double n2){
return nl + n2;
}
}

O referências
class Program
{
O referências
static void Main(String[] args) {

double x = 3;

Console.WriteLine(x.Soma (7));
Console.WriteLine(9.2. Soma (7));

}
}
}

Vamos entender o que foi feito nesse exemplo? Observe as informações para saber!

Linguagem de Programação C# Avançado

46

▼ Passo 1

Inicialmente, foi estabelecida uma classe para representar a
extensão (com nome de calculadora) e adicionado um método
de soma nessa classe para realizar a operação citada entre dois
números.

▼ Passo 2

Perceba que, no parâmetro, foi inserido o termo this, o qual
representa a extensão. No main do nosso algoritmo, realizamos
tipos como se fossem funções do próprio C#. Além disso,
podemos utilizar números literais, como é o caso do valor “9.2”.

▼ Passo 3

Por fim, acrescentamos novos métodos para o cálculo da nossa
calculadora (como subtração e multiplicação), a fim de verificar o
funcionamento. O resultado ao compilar sugere “10” e “16,2”.

Assim fica mais fácil identificarmos o que se trata uma extensão, não é? Desse
modo, você poderá colocar seus conhecimentos adquiridos em prática de maneira
tranquila e sem grandes problemas!

Linguagem de Programação C# Avançado

47

Fechamento

Parabéns!

Você finalizou o curso avançado de C#. Esperamos que tenha aprimorado seus
conhecimentos a respeito da linguagem.

Agora é com você, procure aplicar os aprendizados adquiridos. Observe que a
linguagem C# apresenta uma quantidade vasta de ferramentas disponíveis para o
desenvolvimento de algoritmos. Lembre-se sempre de buscar novas ferramentas
e manter-se atualizado.

Até a próxima!

Linguagem de Programação C# Avançado

48

Referências

DIMES, T. Programação em C# para iniciantes. [S. l.]: Babelcube Inc., 2016. v. 3.

LIMA, E.; REIS, E. C# e .Net para desenvolvedores. Rio de Janeiro: Campus,
2002. Disponível em: http://www.etelg.com.br/paginaete/downloads/informatica/
apostila2.pdf. Acesso em: 16 abr. 2021.

SAADE, J. C# - guia do programador. São Paulo: Novatec, 2011.

SILVA, L. F. da. Desenvolvimento de software II C# programação em camadas.
Joinville: Clube de Autores, 2015.

TAVARES, N. S.; DIONYSIO, R. C. C.; SANTOS JR., C. I. dos. C#: introdução a programação
orientada a objetos. Joinville: Clube de Autores, 2009. v. 1.

FREEPIK. Fundo de tecnologia abstrata de código de programação
do desenvolvedor de software e script de computador Foto
Premium. Freepik 2021. Disponível em: https://br.freepik.com/fotos-
premium/fundo-de-tecnologia -abstrata-de-codigo -de-programacao-
do -desenvo l vedor- de - sof tware - e - scr ip t- de - computador_ 2109654 .
htm#page=1&query=programa%C3%A7%C3%A3o&position=40. Acesso em 30 de
junho de 2021.

______. Programador em desenvolvimento team development
website design e codificação de tecnologias trabalhando no
escritório da empresa de software Foto Premium. Freepik 2021.
Disponível em:https://br.freepik.com/fotos-premium/programador-em-
desenvolvimento-team-development-website-design-e-codif icacao-de-
tecnologias-trabalhando-no-escritorio-da-empresa-de-software_5429218.
htm#page=2&query=programa%C3%A7%C3%A3o&position=44. Acesso em 30 de
junho de 2021.

______. Desenvolvedor de software codificando javascript no laptop Foto
Premium. Freepik 2021. Disponível em: https://br.freepik.com/fotos-premium/
desenvolvedor-de-software-codif icando-javascript-no-laptop_13486390.
htm#query=programa%C3%A7%C3%A3o&position=25. Acesso em 30 de junho de
2021.

http://www.etelg.com.br/paginaete/downloads/informatica/apostila2.pdf
http://www.etelg.com.br/paginaete/downloads/informatica/apostila2.pdf
https://br.freepik.com/fotos-premium/fundo-de-tecnologia-abstrata-de-codigo-de-programacao-do-desenvolvedor-de-software-e-script-de-computador_2109654.htm#page=1&query=programa%C3%A7%C3%A3o&position=40
https://br.freepik.com/fotos-premium/fundo-de-tecnologia-abstrata-de-codigo-de-programacao-do-desenvolvedor-de-software-e-script-de-computador_2109654.htm#page=1&query=programa%C3%A7%C3%A3o&position=40
https://br.freepik.com/fotos-premium/fundo-de-tecnologia-abstrata-de-codigo-de-programacao-do-desenvolvedor-de-software-e-script-de-computador_2109654.htm#page=1&query=programa%C3%A7%C3%A3o&position=40
https://br.freepik.com/fotos-premium/fundo-de-tecnologia-abstrata-de-codigo-de-programacao-do-desenvolvedor-de-software-e-script-de-computador_2109654.htm#page=1&query=programa%C3%A7%C3%A3o&position=40
https://br.freepik.com/fotos-premium/desenvolvedor-de-software-codificando-javascript-no-laptop_13486390.htm#query=programa%C3%A7%C3%A3o&position=25
https://br.freepik.com/fotos-premium/desenvolvedor-de-software-codificando-javascript-no-laptop_13486390.htm#query=programa%C3%A7%C3%A3o&position=25
https://br.freepik.com/fotos-premium/desenvolvedor-de-software-codificando-javascript-no-laptop_13486390.htm#query=programa%C3%A7%C3%A3o&position=25

Linguagem de Programação C# Avançado

49

______. Escrevendo códigos e digitando tecnologia de código de dados,
programador colaborando trabalhando em projeto de web site em
desenvolvimento de software em computador desktop da empresa,
programação com html, php e javascript. Foto Premium. Freepik 2021. Disponível
em: https://br.freepik.com/fotos-premium/escrevendo-codigos-e-digitando-
tecnologia-de-codigo-de-dados-programador-colaborando-trabalhando-em-
projeto-de-web-site-em-desenvolvimento-de-software-em-computador-
desktop-da-empresa-programacao-com-html-php-e-javascript_12951900.
htm#page=2&query=programming++coding++developer&position=28. Acesso em
30 de junho de 2021.

______. Código html na tela do laptop, plantas verdes na mesa,
escritório aconchegante Foto Premium. Freepik 2021. Disponível
em: https://br.freepik.com/fotos-premium/codigo-html-na-tela-do-
laptop -plantas-verdes-na-mesa-escr i tor io -aconchegante_12586698.
htm#page=2&query=programming++coding++developer&position=45. Acesso em
30 de junho de 2021.

______. Código javascript em um monitor Foto Premium. Freepik 2021. Disponível em:
https://br.freepik.com/fotos-premium/codigo-javascript-em-um-monitor_8406217.
htm#page=7&query=programming+coding+developer&position=37. Acesso em 30
de junho de 2021.

______. Código php em um monitor Foto Premium. Freepik 2021. Disponível
em: https://br.freepik.com/fotos-premium/codigo-php-em-um-monitor_8406218.
htm#page=7&query=programming+coding+developer&position=38. Acesso em 30
de junho de 2021.

______. Freepik.Recursos gráficos para todos. Freepik, 2021. Disponível em: https://
br.freepik.com/. Acesso em: 21 de out. de 2021

https://br.freepik.com/fotos-premium/escrevendo-codigos-e-digitando-tecnologia-de-codigo-de-dados-programador-colaborando-trabalhando-em-projeto-de-web-site-em-desenvolvimento-de-software-em-computador-desktop-da-empresa-programacao-com-html-php-e-javascript_12951900.htm#page=2&query=programming++coding++developer&position=28
https://br.freepik.com/fotos-premium/escrevendo-codigos-e-digitando-tecnologia-de-codigo-de-dados-programador-colaborando-trabalhando-em-projeto-de-web-site-em-desenvolvimento-de-software-em-computador-desktop-da-empresa-programacao-com-html-php-e-javascript_12951900.htm#page=2&query=programming++coding++developer&position=28
https://br.freepik.com/fotos-premium/escrevendo-codigos-e-digitando-tecnologia-de-codigo-de-dados-programador-colaborando-trabalhando-em-projeto-de-web-site-em-desenvolvimento-de-software-em-computador-desktop-da-empresa-programacao-com-html-php-e-javascript_12951900.htm#page=2&query=programming++coding++developer&position=28
https://br.freepik.com/fotos-premium/escrevendo-codigos-e-digitando-tecnologia-de-codigo-de-dados-programador-colaborando-trabalhando-em-projeto-de-web-site-em-desenvolvimento-de-software-em-computador-desktop-da-empresa-programacao-com-html-php-e-javascript_12951900.htm#page=2&query=programming++coding++developer&position=28
https://br.freepik.com/fotos-premium/escrevendo-codigos-e-digitando-tecnologia-de-codigo-de-dados-programador-colaborando-trabalhando-em-projeto-de-web-site-em-desenvolvimento-de-software-em-computador-desktop-da-empresa-programacao-com-html-php-e-javascript_12951900.htm#page=2&query=programming++coding++developer&position=28
https://br.freepik.com/fotos-premium/codigo-html-na-tela-do-laptop-plantas-verdes-na-mesa-escritorio-aconchegante_12586698.htm#page=2&query=programming++coding++developer&position=4
https://br.freepik.com/fotos-premium/codigo-html-na-tela-do-laptop-plantas-verdes-na-mesa-escritorio-aconchegante_12586698.htm#page=2&query=programming++coding++developer&position=4
https://br.freepik.com/fotos-premium/codigo-html-na-tela-do-laptop-plantas-verdes-na-mesa-escritorio-aconchegante_12586698.htm#page=2&query=programming++coding++developer&position=4
https://br.freepik.com/fotos-premium/codigo-javascript-em-um-monitor_8406217.htm#page=7&query=programming+coding+developer&position=37
https://br.freepik.com/fotos-premium/codigo-javascript-em-um-monitor_8406217.htm#page=7&query=programming+coding+developer&position=37
https://br.freepik.com/fotos-premium/codigo-php-em-um-monitor_8406218.htm#page=7&query=programming+coding+developer&position=38
https://br.freepik.com/fotos-premium/codigo-php-em-um-monitor_8406218.htm#page=7&query=programming+coding+developer&position=38

